Теория линий второго порядка и использования ИКТ в обучении

Страница 3

где . Из (20) следует, что

Рассмотрим два случая:

Пусть , тогда , то есть (21)

где

Положим , тогда уравнение (21) примет вид:

Это каноническое уравнение параболы, симметричной относительно

оси (OY ).

Пусть , тогда уравнение (20) перепишется в виде

(22)

1. Если , то получим уравнение оси (OY ) .

2. Если , то возможны два случая. Если A′ и F′ одного знака, то точек, удовлетворяющих данному уравнению, нет; если же A′ и F′ разных знаков, то , где , поэтому и уравнение (22) описывает две параллельные прямые:

b) Пусть , тогда уравнение (9) примет вид

(23)

Если , а , то точек, удовлетворяющих уравнению (23), нет; если же или отличны от нуля, то уравнение (23) описывает прямую.

Вывод. Путем преобразований кривой второго порядка, определяемой уравнением (1) мы можем получить уравнения таких линии второго порядка, как:

- уравнение эллипса

- уравнение гиперболы

- уравнение параболы

- совокупности двуз пересекающихся прямых

- совокупности двух параллельных прямых

Содержание темы «Линии второго порядка» в элементарной математике

В математике рассматриваются линии второго порядка, как конические сечения: окружность, эллипс, гипербола, парабола; или как множество точек обладающих некоторыми свойствами.

Рассмотрим каждую линию второго порядка подробнее, определяя линии как множество точек.

Окружность

Определение 1.1. Окружность - множество точек плоскости, равноудаленных от данной точки М0, называемой ее центром.[9.С.65]

Общий вид уравнения

Исследование свойств окружности по её уравнению

Пресечение с осями координат:

С ОХ: Пусть у=0, тогда . Отсюда делаем вывод, что (-R;0), (R;0)- точки пересечения с осью ОХ.

С ОУ: Пусть х=0, тогда 02+у2=R2. Отсюда делаем вывод, что (0;-R),(0;R)- точки пресечения с осью ОУ.

Следовательно, у окружности с центром в начале координат область допустимых значений для и для закрытый интервал .

Вывод: Окружность вписана в квадрат с размером стороны 2R.[1.С.99]

2) Симметрия окружности:

Относительно оси ОХ и оси ОУ, так как окружность имеет общие точки пересечения с осями координат.

Пусть принадлежит окружности, т. Е - верное равенство.

Точка симметрична точке М0 относительно оси ОХ. Подставим координаты точки М1 в уравнение окружности ,отсюда имеем: - верное равенство.

Следовательно, М1 принадлежит окружности, отсюда следует, что окружность симметрична относительно оси ОХ.

Страницы: 1 2 3 4 5 6 7 8

Еще о педагогике:

Взаимодействие современной школы и современного телевидения
. “образование” сегодня — это умение вести активную оборону от потока средств массовой информации. “Активную” — потому что от потока нужно не отгораживаться, а смело черпать из него, фильтровать и брать по возможности все, что в нем найдется пусть и не “вечного”, но хотя бы “разумного, доброго”, ил ...

Приложения интеграла в физике
Рассмотрим несколько нетривиальных примеров применения интеграла в физике. Нахождение силы. №1. На прямой расположены материальная точка массы m и однородный стержень массы M и длины l. Точка удалена от концов стержня на расстояния c и c+l. Определить силу гравитационного притяжения между стержнем ...

Недостатки произношения свистящих звуков, приемы постановки в практической деятельности
Артикуляция звуков С, С’, З, З’, Ц. прежде чем рассматривать недостатки произношения свистящих звуков С, С’, З, З’, Ц надо знать их правильную артикуляцию. Артикуляция звука С: Губы – не напряжены, растянуты, как при улыбке. Зубы – сближены на 1-1,5мм, верхние и нижние резцы обнажены. Язык – кончик ...

Главные разделы

Copyright © 2024 - All Rights Reserved - www.rumschool.ru