Методические аспекты изучения линий второго порядка в школьном курсе алгебры 7-9 классов

Статьи о педагогике » Возможности использования ИКТ в изучении линий второго порядка в школьном курсе алгебры » Методические аспекты изучения линий второго порядка в школьном курсе алгебры 7-9 классов

Страница 6

Рис. 1 - График функции

Теперь учащиеся по коэффициентам квадратного трехчлена могут представить общий вид соответствующей параболы и вычислить координаты её вершины, путём выделения полного квадрата в данном трёхчлене. В результате выполнения практических заданий, на построение графика квадратичной функции необходимо в строгой последовательности проговорить и зафиксировать алгоритм построения функции .

В системе упражнений, учебников по алгебре, значительное место отводится задачам прикладного характера. Завершается тема рассмотрением вопроса о решении квадратных неравенств, выбор решения основан на использовании графиков.

При работе с теоретической частью и выполнении заданий учащиеся должны будут проводить наблюдение, выдвигать гипотезы, рассуждать, доказывать, переходить от одной системы терминов к другой.

Затем отмечается, что график любой квадратичной функции - это парабола и приведены различные виды парабол.

В восьмом классе идет изучение функции, изложение материала начинается с анализа примеров реальных зависимостей. Учащимся предлагается рассмотреть зависимость времени движения пешехода от его скорости, длины стороны прямоугольника заданной площади от длины другой его стороны, количества товара, которое можно купить на определенную сумму денег, от цены этого товара. Обобщая эти примеры постепенно приходим к определению функции (называемой обратной пропорциональностью).

Все свойства и график функции в учебнике рассматриваются на примере конкретных функций (Например, ). По точкам строится график данной функции и вводится его название (гипербола). Здесь из свойств выделяются только область определения, промежутки убывания и возрастания функции и делается замечание, что график данной функции не пересекает координатные оси. Исследование проводится подробно для первого случая, когда , а для второго случая ( ) приведены только конечные выводы и результаты.

Традиционно построение графика обратной пропорциональности вызывает у учащихся трудности. Многие строят его небрежно, не соблюдая симметрии ветвей, ветви бывают очень короткие, очень часто в работах учащихся одна из ветвей гиперболы сначала приближается, например, к оси х, а затем удаляется от нее. Для предупреждения подобных ошибок очень важно проанализировать особенности графика, обратив внимание учащихся на то, что график состоит из двух ветвей, симметричных друг другу относительно начала координат. Каждая ветвь гиперболы по мере удаления от начала координат становится все ближе и ближе к осям, но не пересекает их. Бесконечное приближение ветвей к осям координат можно проиллюстрировать в ходе небольшого числового опыта: например, подставить в формулу вместо х несколько достаточно больших чисел в порядке их возрастания и понаблюдать, как изменяется при этом значение .

Страницы: 1 2 3 4 5 6 

Еще о педагогике:

Культура письма при конспектировании лекций
В современных условиях, как известно, более широко практикуется конспектирование, ведущееся одновременно со слушанием лекции. Такое конспектирование, если оно правильно поставлено и не является самоцелью, имеет известное вспомогательное значение для студентов. Конспектирование является средством ра ...

Образование как способ мышления
Образование - результат обучения. В буквальном смысле оно означает формирование образов, т.е. законченных представлений об изучаемых предметах. Образование - это объем систематизированных знаний, умений, навыков, способов мышления, которыми овладел обучаемый. Образованным принято называть человека, ...

Понятие "быстрого чтения"
В одной из заметок "Литературная газета" писала: "Пять тысяч знаков в минуту - такова скорость чтения у инженера Блохина. Объясняя сущность своего метода, Блохин сказал: "Я никогда не задумываюсь над прочитанным"". Люди читают сотни веков, но только в наше время со все ...

Главные разделы

Copyright © 2024 - All Rights Reserved - www.rumschool.ru