Методические аспекты изучения линий второго порядка в школьном курсе алгебры 7-9 классов

Статьи о педагогике » Возможности использования ИКТ в изучении линий второго порядка в школьном курсе алгебры » Методические аспекты изучения линий второго порядка в школьном курсе алгебры 7-9 классов

Страница 5

Пример 1. Задан график функции. Построить на этом чертеже график функции .

Заметим, что при заданном значении аргумента Х0 значения функции на одно и то же число, равное 1, больше значений функции. Поэтому для построения соответствующей точки второй функции на графике достаточно поднять на одну единицу график первой функции с абсциссой Х0. Следовательно, чтобы построить весь график второй функции, нужно поднять на 1 единицу весь график первой функции. Доказывается теорема о том, что график любой функции вида может быть получен путем сдвигов вдоль координатных осей параболы .

После этой подготовки, казалось бы, можно приступить к изучению графиков произвольных квадратичных функций. Но здесь возникает трудность: коэффициент при первой степени неизвестного не имеет для квадратичной функции достаточно простого геометрического смысла. Именно поэтому приходится идти обходным путем, следуя тем же преобразованиям, которые производились при выводе формулы решения квадратного уравнения, и вводить в рассмотрение новый подкласс квадратичных функций вида . Объяснения при построении графиков здесь в целом могут быть такими же, как при рассмотрении функций вида , однако усваивается предлагаемый способ здесь с большим трудом, так как требует дополнительных геометрических преобразований, поэтому требуется достаточное количество упражнений для закрепления. После таких приготовлений построение графика, а также изучение его свойств происходят без принципиальных затруднений.

Отметим здесь один частный, но полезный прием, который состоит в использовании системы заданий, имеющих цель - дать представление о тех или иных чертах данной функции или целого класса без указания точного значения величин, связанных с рассматриваемым вопросом. Его можно назвать качественным или оценочным исследованием функции. Приведем два примера применения приема, связанные с изучением квадратичных функций.

Пример 2. На рисунке изображены графики функций и . Как относительно их пройдет график функции ;; ? Это задание не предполагает «точного» построения искомого графика; достаточно лишь указание на область, где он расположен, или его эскизное построение.

Пример 3. На рисунке изображен график функции , пользуясь этим чертежом, изобразить от руки график функции . Проверить правильность сделанного эскиза, вычислить значения функции при и отметить точки графика. Каким преобразованием можно перевести график функции в график функции ?

Страницы: 1 2 3 4 5 6

Еще о педагогике:

Работа за компьютером с помощью меню
При работе с программой пользователю часто бывает необходимо подать ей определенную команду, выбрать необходимый режим работы или осуществить какое-либо действие. Для передачи команд программе графический пользовательский интерфейс включает систему меню и панелей инструментов. Меню - это набор пунк ...

Опытно-экспериментальное исследование по развитию конструктивных умений дошкольников в изготовлении подвижных игрушек
Опытно-экспериментальная работа проводилась в МДОУ № 11 комбинированного типа г. Комсомольска-на-Амуре в 2009-2010 учебном году с детьми 5-го года жизни, условно разделённых на две группы по восемь человек. Констатирующий эксперимент был направлен на выявление условия сформированности конструктивны ...

Инновационные подходы к обучению астрономии
Что носится в воздухе и чего не требует время, то может возникнуть одновременно в ста головах без всякого заимствования. И. Гёте Методами, формами, средствами, технологиями, изложенными нами в предыдущем параграфе далеко не кончается широкий спектр возможностей преподавания астрономии. Третье тысяч ...

Главные разделы

Copyright © 2019 - All Rights Reserved - www.rumschool.ru