Методические аспекты изучения линий второго порядка в школьном курсе алгебры 7-9 классов

Статьи о педагогике » Возможности использования ИКТ в изучении линий второго порядка в школьном курсе алгебры » Методические аспекты изучения линий второго порядка в школьном курсе алгебры 7-9 классов

Страница 5

Пример 1. Задан график функции. Построить на этом чертеже график функции .

Заметим, что при заданном значении аргумента Х0 значения функции на одно и то же число, равное 1, больше значений функции. Поэтому для построения соответствующей точки второй функции на графике достаточно поднять на одну единицу график первой функции с абсциссой Х0. Следовательно, чтобы построить весь график второй функции, нужно поднять на 1 единицу весь график первой функции. Доказывается теорема о том, что график любой функции вида может быть получен путем сдвигов вдоль координатных осей параболы .

После этой подготовки, казалось бы, можно приступить к изучению графиков произвольных квадратичных функций. Но здесь возникает трудность: коэффициент при первой степени неизвестного не имеет для квадратичной функции достаточно простого геометрического смысла. Именно поэтому приходится идти обходным путем, следуя тем же преобразованиям, которые производились при выводе формулы решения квадратного уравнения, и вводить в рассмотрение новый подкласс квадратичных функций вида . Объяснения при построении графиков здесь в целом могут быть такими же, как при рассмотрении функций вида , однако усваивается предлагаемый способ здесь с большим трудом, так как требует дополнительных геометрических преобразований, поэтому требуется достаточное количество упражнений для закрепления. После таких приготовлений построение графика, а также изучение его свойств происходят без принципиальных затруднений.

Отметим здесь один частный, но полезный прием, который состоит в использовании системы заданий, имеющих цель - дать представление о тех или иных чертах данной функции или целого класса без указания точного значения величин, связанных с рассматриваемым вопросом. Его можно назвать качественным или оценочным исследованием функции. Приведем два примера применения приема, связанные с изучением квадратичных функций.

Пример 2. На рисунке изображены графики функций и . Как относительно их пройдет график функции ;; ? Это задание не предполагает «точного» построения искомого графика; достаточно лишь указание на область, где он расположен, или его эскизное построение.

Пример 3. На рисунке изображен график функции , пользуясь этим чертежом, изобразить от руки график функции . Проверить правильность сделанного эскиза, вычислить значения функции при и отметить точки графика. Каким преобразованием можно перевести график функции в график функции ?

Страницы: 1 2 3 4 5 6

Еще о педагогике:

Особенности адаптации детей младшего дошкольного возраста
Специфика адаптации детей к ДОУ Адаптация - это приспособление организма к новой обстановке, а для ребенка детский сад, несомненно, является новым, еще неизвестным пространством, с новым окружением и новыми отношениями. «Адаптация является активным процессом, приводящим или к позитивным (адаптирова ...

Структура воспитательной деятельности учителя и сущность ее отдельных видов
Для приобретения и совершенствования профессиональной умелости и выработки педагогического мастерства учителю необходимо детально представлять структуру педагогической деятельности и связанную с ней систему теоретических знаний и практических умений и навыков. Психологические исследования (Н.В.Кузь ...

Виды заданий по формированию словоизменения
Составление предложений по опорным словам, данным вразброс (предлагаемые слова стоят в начальной форме); вставка в предложения пропущенных слов; определение правильности предложений (Детям даются предложения с правильными и неправильными формами слов. Предлагается определить, какое из предложений п ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.rumschool.ru