Векторное пространство

Страница 1

Вектором называется семейство всех параллельных между собой одинаково направленных и имеющих одинаковую длину отрезков (рис.1). Вектор изображают на чертежах отрезком со стрелкой (т.е. изображают не все семейство отрезков, представляющее собой вектор, а лишь один из этих отрезков). Для обозначения векторов в книгах и статьях применяют жирные латинские буквы а, в, с и так далее, а в тетрадях и на доске – латинские буквы с черточкой сверху,

Той же буквой, но не жирной , а светлой (а в тетради и на доске- той же буквой без черточки) обозначают длину вектора. Длину иногда обозначают также вертикальными черточками – как модуль (абсолютную величину) числа. Таким образом, длина вектора а обозначается через а или IаI, а в рукописном тексте длина вектора а обозначается через а или IаI. В связи с изображением векторов в виде отрезков (рис.2) следует помнить , что концы отрезка, изображающего вектор, неравноправны: одного конца отрезка к другому. Различают начало и конец вектора (точнее, отрезка, изображающего вектор).

Весьма часто понятию вектора дается другое определение: вектором называется направленный отрезок. При этом векторы (т.е. направленные отрезки), имеющие одинаковую длину и одно и то же направление (рис.3), уславливаются считать равными.

Векторы называются одинаково направленными, если их полупрямые одинаково направлены.

Сложение векторов.

Все сказанное пока еще не дает понятие вектора достаточно содержательным и полезным. Большую содержательность и богатую возможность приложений понятие вектора получает тогда, когда мы вводим своеобразную «геометрическую арифметику» – арифметику векторов, позволяющую складывать векторы, вычитать их и производить над ними целый ряд других операций. Отметим в связи с этим, что ведь и понятие числа становится интересным лишь при введении арифметических действий, а не само по себе.

Суммой векторов а и в с координатами а1, а2 и в1, в2 называется вектор с с координатами а1 + в1, а2 + в2, т.е.

а (а1; а2) + в (в1;в2) = с (а1 + в1; а2 + в2).

Следствие:

а + в = в + а , (коммутативность)

а + ( в + с ) = (а + в) + с. (ассоциативность)

Для доказательства коммутативности сложения векторов на плоскости необходимо рассмотреть пример.

а и в – векторы (рис.5).

Страницы: 1 2 3 4 5 6

Еще о педагогике:

Развитие детского творчества
Творчество - это созидание. Оно порождает новые духовные и материальные ценности. Стремление к творчеству характерно для школы наших дней. Это все же мир юности и надежд, где почва благоприятна для творчества и где не угасает одухотворяющий поиск разума и добра. Главное в педагогике творчества - не ...

Сущность контроля и оценки результатов обучения в начальной школе
Проверка и оценка достижений младших школьников является весьма существенной составляющей процесса обучения в одной из важных задач педагогической деятельности учителя. Этот компонент наряду с другими компонентами учебно-воспитательного процесса (содержание, методы, средства, формы организации) дол ...

Принцип прочности
Принцип прочности - основательное изучение материала, при котором учащиеся всегда могут воспроизвести его в памяти или воспользоваться им как в учебных, так и в практических целях. Принцип прочности подытоживает теоретические поиски ученых и практический опыт многих поколений учителей по обеспечени ...

Главные разделы

Copyright © 2019 - All Rights Reserved - www.rumschool.ru