Анализ школьных учебников алгебры и начал анализа

Страница 1

Проведём анализ некоторых школьных учебников алгебры и начал анализа с точки зрения использования различных подходов введении понятия интеграла, рассматриваемых в них приложений интеграла в физике.

В учебниках, как правило, используются следующие подходы к введению понятия определенного интеграла:

Интеграл как предел интегральных сумм.

Этот подход предполагает введение операции интегрирования как независимой операции; при этом интеграл определяется как предел последовательности, составленной из интегральных сумм. Начинается изучение в этом случае с рассмотрения конкретных задач, например, задачи о площади под кривой; задачи о работе силы и др. Затем, обобщив полученные результаты, переходят к определению интеграла как предела интегральных сумм.

Хотя данное определение громоздко, но идея метода наглядна (геометрическая интерпретация – площадь криволинейной трапеции). Вместе с определением интеграла получают и способ его вычисления. Но на практике для вычисления интеграла используют формулу Ньютона – Лейбница, которую при данном подходе необходимо доказать.

1) В учебнике А. Н. Колмогорова «Алгебра и начала анализа» при введении интеграла рассматривается задача о вычислении площади криволинейной трапеции. Автор приводит в учебнике два способа вычисления площади криволинейной трапеции: с помощью теоремы о площади криволинейной трапеции и с помощью интегральных сумм. Второй способ сводится к определению интеграла. С помощью интегральных сумм выводятся также формулы для вычисления объемов тел, работы переменной силы, а также нахождения массы стержня и центра масс.

Среди применений интеграла в данном учебнике выводится формула для нахождения работы переменной силы, формула вычисления массы стержня и центра масс. Все формулы выводятся одним способом: с помощью интегральных сумм. Для самостоятельного решения учащимся предлагается задача о нахождении кинетической энергии стержня и несколько задач на уже рассмотренные формулы. Причем задачи делятся на несколько уровней сложности, в том числе задачи повышенной трудности.

2) В учебнике Мордковича А. Г. «Алгебра и начала анализа» при введении понятия «Определенный интеграл» рассматриваются задачи, приводящие к данному понятию, а именно задача о вычислении площади криволинейной трапеции, задача о вычислении массы стержня и задача о перемещении точки. Все три задачи при их решении приводятся к одной и той же математической модели. При чем говорится о том, что многие задачи из различных областей науки и техники приводят в процессе решения к такой же модели. Далее дается математическое описание этой модели, которая была построена в трех рассмотренных задачах для непрерывной на отрезке [a; b] функции y=f(x):

разбивают отрезок [a; b] на n равных частей;

составляют сумму

Sn=f(x0)Δx0+f(x1) Δx1+…+f(xk) Δxk+…+f(xn-1) Δxn-1;

3) вычисляют .

Автор учебника поясняет, что в курсе математического анализа доказано, что этот предел существует. Его называют определенным интегралом от функции y=f(x) по отрезку [a; b].

После чего автор учебника возвращается к трем рассмотренным ранее задачам и результат, полученный при их решении, переписывает следующим образом:

, где S – площадь криволинейной трапеции, ограниченной графиком функции y=f(x);

, где m – масса неоднородного стержня с плотностью p(х);

, где s – перемещение точки, движущейся по прямой со скоростью v=v(t).

В учебнике в физических приложениях интеграла приводятся те же задачи, что и при введении понятия интеграла, а именно задачи о массе стержня и перемещении точки. Этим автор учебника и ограничивает изучение приложений интеграла в физике.

3) В учебнике М. И. Башмакова «Алгебра и начала анализа» тема «Интеграл и его применение» выделена в отдельную главу. Автор дает следующее определение интеграла: «Пусть дана положительная функция f, определенная на конечном отрезке [a; b]. Интегралом от функции f на отрезке [a; b] называется площадь её подграфика». Далее показывается, как вычислить эту площадь с помощью интегральных сумм и делается вывод, что интеграл равен пределу интегральных сумм. Иллюстрируется этот метод на задаче о нахождении объема лимона и нахождении работы по перемещению точки.

В данном учебнике рассмотрены наиболее разнообразные примеры приложений интеграла в физике. Задачи о работе силы, перемещении точки, о вычислении массы стержня, электрического заряда и нахождение давления воды на плотину приводятся в учебнике вместе с их теоретическим обоснованием (выводом). Без вывода представлены формулы нахождения работы по известной мощности и количества теплоты по известной теплоемкости. Однако, для самостоятельного решения учащимся предлагается мало задач.

Страницы: 1 2

Еще о педагогике:

Организация эффективного контроля знаний
Субъективизм, уязвимость оценки знаний при обычном кон­троле свидетельствует о том, что мы не можем даже установить четких критериев оценки. При объективном контроле знаний каждая оценка имеет строгий однозначный смысл и отражает достигнутый учеником уровень усвоения деятельности. Уровень деятельно ...

Осмысление заголовка как один из приемов понимания текста
Понимание текста есть процесс перекодирования, который позволяет осуществить переход от линейной структуры текста, образуемой последовательностью материальных знаков языка, к структуре его содержания. Понять текст – это значит совершить переход от его внешней языковой формы к модели предметной ситу ...

Организация обучения речевому этикету
Обучение речевому этикету как компоненту культуры страны изучаемого языка включает целый ряд аспектов, каждый из которых значим практически: познавательный аспект влияет на мотивацию, развивающий облегчает овладение, воспитательный способствует и тому, и другому и т.д. Содержательная сторона учебно ...

Главные разделы

Copyright © 2019 - All Rights Reserved - www.rumschool.ru