Введение понятия интеграла с помощью физических моделей

Страница 1

После анализа достоинств и недостатков школьных учебников математики относительно темы «Интеграл», после ознакомления с некоторыми учебниками физики и, учитывая психолого-педагогические и методические основы изучения интеграла, мною была разработана методика изучения понятия интеграла с использованием физических моделей в школьном курсе математики, представленная в данной главе.

Нижеследующая методика введения понятия интеграла с помощью задач физики разрабатывалась мной на основе следующего факта.

Физические величины, вычисляемые с помощью интеграла, можно разделить на два типа, в зависимости от того, как они естественно определяются. К первому типу относятся «первичные» величины (длина пути, масса, количество электричества, количество теплоты и т. п.), т. е. такие величины, для которых другие, связанные с ними («вторичные») величины (соответственно скорость, линейная плотность, величина тока, удельная теплоемкость и т. п.) определяются как производные этих величин. Ко второму типу относятся такие, которые определяются естественным образом как интегралы от «первичных» по отношению к ним величин (например, площадь, работа). Для первого типа величин интегральная формула для их вычисления может и должна быть доказана, опираясь на известное из предыдущего материала определение «вторичной» величины как производной от данной «первичной». Для второго типа интегральная формула появляется по определению.

В соответствии с этим рассмотрим описанные в первой главе подходы на конкретных физических моделях из разных разделов физики (механика, электродинамика, кинематика и др.), уделив особое внимание второму подходу, поскольку в школьных учебниках он практически не используется.

При введении понятия интеграла как предела интегральных сумм довольно наглядным и понятным для учащихся является пример задачи о давлении жидкости на стенку.

Задача. Бассейн высоты H наполнен водой. Вычислить давление воды на прямоугольную стенку бассейна с основанием прямоугольника, равным а.

Разделим высоту Н на n равных частей (Δh). Стенка разделится на «элементы». Так как кубометр воды весит тонну, то давление столба жидкости высоты hi м, имеющего сечение 1 м2, равно hi тоннам.

Давление же воды на элемент, находящийся на глубине hi, равно произведению hi на площадь элемента: hia Δh. Обозначим произведение hia через F(hi). Тогда величина давления на всю стенку приближенно равна

Pn≈ F1(h1)Δh1+…+Fn(hn) Δhn.

Данную сумму называют интегральной суммой функции F(h) на отрезке [0; H]. При этом предполагается, что функция F(h) непрерывна на отрезке [0; H] и может принимать любые значения. Если и высоты «элементов» стремятся к нулю, то точное выражение суммы равно . Его называют определенным интегралом от функции F(h) на отрезке [0; H] и обозначают .

Далее понятие определенного интеграла обобщается на произвольную непрерывную функцию F(x) и произвольный отрезок [a; b].

Рассмотрим несколько задач с физическими моделями, где интеграл определяется как приращение первообразной.

1. Задача о перемещении точки.

Пусть v=v(t) скорость прямолинейного движения точки, заданная на некотором промежутке времени [t1; t2]. При этом пусть v(t)>0. Как выразится длина пути, пройденного точкой за данный промежуток времени?

Обозначим координату движущейся точки в момент t через S(t). Тогда, так как движение при v>0 происходит только в положительном направлении (или иначе, т. к. S(t) – функция возрастающая, ввиду того, что ), то искомое расстояние будет выражаться числом S(t2)-S(t1). С другой стороны S(t) есть первообразная функции v(t) (). Таким образом вычисление длины пути, пройденного точкой за данный промежуток времени, сводится к отысканию первообразной S(t) функции v(t), т. е. к интегрированию функции v(t).

Страницы: 1 2

Еще о педагогике:

Методы и приемы формирования мотивационно-ценностного отношения младших школьников к учебной деятельности
Существуют определенные методы и приемы, с помощью которых можно формировать и развивать положительную мотивацию младших школьников к учебной деятельности. Для того, чтобы сформировать познавательный интерес, чувство долга и ответственности и другие положительные мотивы учения используется весь арс ...

График учебного процесса
График учебного процесса определяет календарные сроки всех видов учебных занятий, экзаменационных сессий, каникул, выполнения дипломных проектов, проведения производственных практик, сдачи государственных экзаменов. График учебного процесса — составная часть учебного плана, которая содержит (в табл ...

Живой пример окружающих взрослых
Ознакомление с трудом взрослых ставит целью дать детям конкретные знания и представления о труде и воспитать уважение к труду взрослых, научить ценить его, возбудить интерес и любовь к труду. Одновременно решается задача воздействовать и на поведение детей – вызвать желание трудиться, работать добр ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.rumschool.ru