Введение понятия интеграла с помощью физических моделей

Страница 1

После анализа достоинств и недостатков школьных учебников математики относительно темы «Интеграл», после ознакомления с некоторыми учебниками физики и, учитывая психолого-педагогические и методические основы изучения интеграла, мною была разработана методика изучения понятия интеграла с использованием физических моделей в школьном курсе математики, представленная в данной главе.

Нижеследующая методика введения понятия интеграла с помощью задач физики разрабатывалась мной на основе следующего факта.

Физические величины, вычисляемые с помощью интеграла, можно разделить на два типа, в зависимости от того, как они естественно определяются. К первому типу относятся «первичные» величины (длина пути, масса, количество электричества, количество теплоты и т. п.), т. е. такие величины, для которых другие, связанные с ними («вторичные») величины (соответственно скорость, линейная плотность, величина тока, удельная теплоемкость и т. п.) определяются как производные этих величин. Ко второму типу относятся такие, которые определяются естественным образом как интегралы от «первичных» по отношению к ним величин (например, площадь, работа). Для первого типа величин интегральная формула для их вычисления может и должна быть доказана, опираясь на известное из предыдущего материала определение «вторичной» величины как производной от данной «первичной». Для второго типа интегральная формула появляется по определению.

В соответствии с этим рассмотрим описанные в первой главе подходы на конкретных физических моделях из разных разделов физики (механика, электродинамика, кинематика и др.), уделив особое внимание второму подходу, поскольку в школьных учебниках он практически не используется.

При введении понятия интеграла как предела интегральных сумм довольно наглядным и понятным для учащихся является пример задачи о давлении жидкости на стенку.

Задача. Бассейн высоты H наполнен водой. Вычислить давление воды на прямоугольную стенку бассейна с основанием прямоугольника, равным а.

Разделим высоту Н на n равных частей (Δh). Стенка разделится на «элементы». Так как кубометр воды весит тонну, то давление столба жидкости высоты hi м, имеющего сечение 1 м2, равно hi тоннам.

Давление же воды на элемент, находящийся на глубине hi, равно произведению hi на площадь элемента: hia Δh. Обозначим произведение hia через F(hi). Тогда величина давления на всю стенку приближенно равна

Pn≈ F1(h1)Δh1+…+Fn(hn) Δhn.

Данную сумму называют интегральной суммой функции F(h) на отрезке [0; H]. При этом предполагается, что функция F(h) непрерывна на отрезке [0; H] и может принимать любые значения. Если и высоты «элементов» стремятся к нулю, то точное выражение суммы равно . Его называют определенным интегралом от функции F(h) на отрезке [0; H] и обозначают .

Далее понятие определенного интеграла обобщается на произвольную непрерывную функцию F(x) и произвольный отрезок [a; b].

Рассмотрим несколько задач с физическими моделями, где интеграл определяется как приращение первообразной.

1. Задача о перемещении точки.

Пусть v=v(t) скорость прямолинейного движения точки, заданная на некотором промежутке времени [t1; t2]. При этом пусть v(t)>0. Как выразится длина пути, пройденного точкой за данный промежуток времени?

Обозначим координату движущейся точки в момент t через S(t). Тогда, так как движение при v>0 происходит только в положительном направлении (или иначе, т. к. S(t) – функция возрастающая, ввиду того, что ), то искомое расстояние будет выражаться числом S(t2)-S(t1). С другой стороны S(t) есть первообразная функции v(t) (). Таким образом вычисление длины пути, пройденного точкой за данный промежуток времени, сводится к отысканию первообразной S(t) функции v(t), т. е. к интегрированию функции v(t).

Страницы: 1 2

Еще о педагогике:

Содержание, формы и методы обучения учащихся V классов изготовлению изделий на сверлильном станке
В первой главе курсовой работы нами были раскрыты теоретические основы обучения учащихся V классов изготовлению изделий на сверлильных станках, проанализировано содержание обучения учащихся в образовательной области «Технология», что позволило нам спроектировать оптимальную модель процесса обучения ...

Организационные требования к построению пространства кабинета информатики
В данном параграфе мы рассмотрим, как организационные требования к построению пространства кабинета информатики влияют на успешное обучение в школе. В настоящее время информатизация общества и образования выступает в качестве средства интенсификации процесса обучения, совершенствования его форм и м ...

Диагностическая модель исследования нарушений речевого развития у детей
Теоретически обоснована и экспериментально разработана трехуровневая диагностика нарушений речевого развития у детей. Первый уровень диагностического исследования предполагает обоснование и реализацию психодиагностического комплекса, направленного на изучение психического развития ребенка, и на осн ...

Главные разделы

Copyright © 2018 - All Rights Reserved - www.rumschool.ru