Различные методы изучения приложений интеграла в физике

Страница 1

Авторы различных учебников по–разному выводят формулы при изучении приложений интеграла. Рассмотрим несколько различных методов получения (вывода) формул.I. Составление интегральных сумм.Масса стержня переменной плотности.Будем считать, что отрезок [a; b] оси Ох имеет массу с переменной линейной плотностью ρ(х)0, где ρ(х) – непрерывная на отрезке [a; b] функция. Общая масса этого отрезка,где a=x0<x1<…<xn=b, Δxi =xi+1-xi.Аналогично можно вывести формулы для нахождения работы силы, работы электрического заряда, давления жидкости на стенку, центра тяжести системы материальных точек. Центр масс.При нахождении центра масс пользуются следующими правилами:Координата центра масс системы материальных точек А1, А2,…, Аn с массами m1, m2,…, mn, расположенных на прямой в точках с координатами x1, x2,…, xn, находится по формуле.2) При вычислении координаты центра масс можно любую часть фигуры заменить на материальную точку, поместив её в центр масс этой части, и приписать ей массу, равную массе рассматриваемой части фигуры.Пусть вдоль стержня – отрезка [a; b] оси Ох – распределена масса плотностью ρ(х), где ρ(х) – непрерывная функция. Покажем, что координата центра масс равна .Разобьем отрезок [a; b] на n равных частей точками a=x0<x1<…<xn=b. На каждом из n этих отрезков плотность можно считать при больших n постоянной и примерно равной ρ(xk-1) на k-м отрезке (в силу непрерывности ρ(х) ). Тогда масса k-отрезка примерно равна , а масса всего стержня равна . Считая каждый из n маленьких отрезков материальной точкой массы mk, помещенной в точке xk-1, получим, что координата центра масс приближенно находится так:

.

Теперь осталось заметить, что при числитель стремится к интегралу , а знаменатель (выражающий массу всего стержня) – к интегралу .

Аналогично можно вывести формулу для нахождения работы силы.

II. Метод дифференциалов.

Электрический заряд.

Представим себе переменный ток, текущий по проводнику. Как вычислить заряд q, переносимый за интервал времени [a; b] через сечение проводника? Если бы сила тока I не менялась со временем, то изменение заряда q равнялось бы произведению I(b-a). Пусть задан закон изменения I=I(t) в зависимости от времени. Тогда на малом интервале времени [t; t+dt] можно считать силу тока постоянной и равной I(t). Тогда дифференциал заряда запишем так: dq=I(t)dt. Отсюда получаем, что весь заряд, переносимый за интервал времени [a; b] можно записать в виде интеграла:

.

Аналогично выводятся и формулы для нахождения работы силы, перемещения точки, вычисления массы стержня, электрического заряда и давления воды на плотину.

III. Рассмотрение практической задачи.

Работа силы.

Вычислить работу силы F при сжатии пружины на 0,08 м, если для её сжатия на 0,01 м требуется сила 10 Н.

По закону Гука сила F пропорциональна растяжению или сжатию пружины, т. е. F=kx, где x – величина растяжения или сжатия (в м), k – постоянная. Из условия задачи находим k. Так как при х=0,01 м и сила F=10 Н, то . Следовательно, F(x)=kx=1000x.

Страницы: 1 2

Еще о педагогике:

Оценка результатов учебно-познавательной деятельности младших школьников
Оценка – это определение и выражение в балах (отметка), а также в оценочных ситуациях учителя степени усвоения учащимися знаний, умений и навыков, установленных программой. Оценка имеет большое значение для управления как учебной деятельностью учителя, она должна служить также цели совершенствовани ...

Сущность понятия «контроль» как элемент учебного процесса
Элементы контроля успеваемости известно было с древности. Как отмечает Жураковский, контроль за воспитанием обсуждались в работах мыслителей античности. Так в педагогической деятельности Сократа обучение носило характер поучающих бесед знающего с незнающим, где постигалась истина. Сведения о контро ...

Анализ опыта работы школы по организации физкультурно-оздоровительной работы в шестой школьный день
ГУО «Средняя школа №33 г. Минска» в шестой школьный день работает над проблемой «Формирование у школьников отношения к здоровому образу жизни как к одному из главных путей достижения успеха». Это направление инновационной деятельности очень актуально, так как здоровье – ни с чем несравнимая ценност ...

Главные разделы

Copyright © 2021 - All Rights Reserved - www.rumschool.ru