В связи с проблемой формирования и развития способностей следует указать, что целый ряд исследований психологов направлен на выявление структуры способностей школьников к различным видам деятельности. При этом под способностями понимается комплекс индивидуально - психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условием успешного выполнения. Таким образом, способности – сложное, интегральное, психическое образование, своеобразный синтез свойств, или, как их называют компонентов.
Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы. Способности не есть нечто раз и навсегда предопределённое, они формируются и развиваются в процессе обучения, в процессе упражнения, овладения соответствующей деятельностью, поэтому нужно формировать , развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть как далеко может пойти это развитие.
Говоря о математических способностях как особенностях умственной деятельности, следует прежде всего указать на несколько распространенных среди учителей заблуждений.
Во-первых, многие считают, что математические способности заключаются прежде всего в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей.
Во-вторых, многие думают, что способные к математике школьники отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А.Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул.
Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов. Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ученик может работать медленно и неторопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики.
Крутецкий В.А. в книге «Психология математических способностей школьников» различает девять способностей (компонентов математических способностей):
1) Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;
2) Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;
3) Способность к оперированию числовой и знаковой символикой;
4) Способность к «последовательному, правильно расчленённому логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах;
5) Способность сокращать процесс рассуждения, мыслить свернутыми структурами;
6) Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);
7) Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;
8) Математическая память. Можно предположить, что её характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;
9) Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия.
Рассматривая развитие математических способностей младших школьников в при помощи компонентов математических способностей Крутецкого В.А., можно сказать, что:
У детей младшего школьного возраста с нарушением интеллекта наблюдается более простой вид обобщений – движение от частного к известному общему, подвести частный случай под общее правило. Абстрагирование у этих детей выражено гораздо слабее, чем у их сверстников, которые учатся в простых классах. Большое влияние на их рассуждения оказывают несущественные признаки. Поэтому с такими детьми нужно работать тщательнее, усерднее.
Способность к оперированию числовой и знаковой символикой детям даётся нелегко, дети с большим трудом запоминают определения, формулировки, общие схемы рассуждений. Путаются в операциях «сложения» и «вычитания», не запоминают названия некоторых цифр.
Свернутость мышления в младшем школьном возрасте проявляется лишь в самой элементарной форме. Детям же классов коррекции это даётся ещё труднее.
Говоря о гибкости мыслительных процессов, можно сказать, что у данных детей она развита на самом низком уровне. Им очень трудно переключаться от одной умственной операции к другой, нужен отдых.Утомляемость этих детей повышена. Без наглядных пособий, шаблонов и трафаретов, которыми в основном пользуются учителя, детям труднее воспринимать материал.
Еще о педагогике:
Комплекс уроков с использованием методов активизации мотивационно-ценностного
отношения младших школьников к учебной деятельности
Из части 2.3. следует, что учитель практически на каждом уроке может применять различные методы формирования мотивации к учебе своих учеников. В своей работе мы хотим показать как можно использовать различные методы и приемы формирования мотивационно-ценностного отношения к учебной деятельности у м ...
Постановка задачи автоматизации управления учебным процессом
Сложность управления учебным процессом заключается в том, что оценка качества управления и корректировка учебных планов, распределения нагрузки, расписания занятий возможны только после завершения определенного цикла обучения (семестра, учебного года и т. п.). Такое управление называется асинхронны ...
Нравственное воспитание как приоритетное направление в педагогике
В настоящее время становится все более очевидным существование неразрывной связи между общественным и государственным благополучием и психологическим благополучием народа. По мировой статистике Республика Беларусь, как ни странно, – в числе лидеров по убийствам и суициду, по курению, по алкоголизму ...