Типичные методические ошибки учителя при работе с текстовыми задачами

Статьи о педагогике » Методика обучения решению текстовых задач алгебраическим методом » Типичные методические ошибки учителя при работе с текстовыми задачами

Страница 1

Ошибка 1. Пропуск этапа анализа условия задачи.

«Прочитайте условие задачи. Кто пойдет к доске?» – такое часто можно видеть на уроке. И сразу начинается оформление решения. Этап анализа отсутствует и в некоторых учебниках, и в решебниках. Учителя не всегда сами понимают, зачем нужно проводить этот этап. «Мы уже решали подобные задачи. Зачем проводить этап анализа условия задачи?» На это можно возразить. Может быть, проведение этого этапа обязательно не для всех учащихся. В классе найдутся такие ученики, у которых этап анализа свернут. Они его проходят очень быстро, поэтому сразу видят решение и переходят к его оформлению. Задача педагога – помогать тем, у которых не получается. Решение задачи основывается на тех связях, которые существуют между данными и искомыми величинами. На выделение этих связей и направлен анализ условия задачи. Чтобы помочь учащимся самостоятельно осуществлять анализ условия, преподаватель может предложить им специальные памятки.

Ошибка 2. Пропуск этапа поиска решения.

Пропуск этого этапа ведет к недопониманию учащимися сущности эвристической деятельности, и как результат, к возникновению трудностей при самостоятельном решении задач. В практике обучения традиционной является ситуация, когда учитель вызывает к доске учащегося, который знает, как решить задачу. Однако при личностно ориентированном обучении основная забота учителя должна быть связана с теми, кто испытывает затруднения при самостоятельном решении задач.

Тем же учащимся, которые без учителя могут решать задачи, необходимо подбирать задания, усиливающие их умения и способствующие их развитию (составить задачи на основе справочных данных; рассмотреть другие способы решения предложенной задачи; составить граф-схемы других уравнений по задаче и др.)

Ошибка 3. Пропуск этапа исследования решения.

Зачем нужен этот этап? На этапе исследования выясняем, соответствует ли полученный ответ условию задачи (правдоподобность результата); есть ли другие способы решения; что полезного можно извлечь на будущее из решенной задачи. Последний вопрос позволяет рассматривать каждую задачу как звено в общем умении решать задачи, что ведет к накоплению опыта по решению задач.

Ошибка 4. Смешение этапов анализа и поиска решения.

Чтобы этого избежать, надо точно знать, какую цель мы преследуем на каждом этапе. Цель этапа анализа условия – выявить все имеющиеся связи между данными и искомыми величинами, чему помогает составление таблицы (схемы, рисунка). Цель этапа поиска решения – выбрать метод решения (алгебраический или арифметический) и составить план решения. Цели этапов разные, значит, и смешивать эти этапы никак нельзя.

На этапе анализа условия задачи:

разбиваем условие задачи на части;

выясняем, какие величины характеризуют описываемый в условии процесс;

выясняем, какие величины известны, а какие требуется найти;

устанавливаем связи между величинами.

На этапе поиска решения выясняем, что можно найти по данным задачи, и поможет ли это дальнейшему решению.

Если для решения задачи выбран алгебраический метод, то поиск ведем по следующим этапам:

определяем условия, которые могут быть основанием для составления уравнения, и выбираем одно из них;

составляем схему уравнения, соответствующего выбранному условию;

определяем, какие величины можно обозначить за х; выбираем одну из них;

определяем, какие величины нужно выразить через х, и находим условия, которые позволяют это сделать.

Страницы: 1 2

Еще о педагогике:

Анатомия птиц, полёт птиц
Одним из основных отличий пернатых от других групп позвоночных, является способность летать. Существует относительно небольшое количество (около 60 видов) нелетающих либо почти нелетающих птиц, однако все они в процессе эволюции так или иначе утратили это качество, которое имели их предки. Умение п ...

Сущность алгебраического метода решения текстовых задач
Под алгебраическим методом решения задач понимается такой метод решения, когда неизвестные величины находятся в результате решения уравнения или системы уравнений, решения неравенства или системы неравенств, составленных по условию задачи. Иногда алгебраическое решение задачи бывает очень сложным. ...

Психолого – педагогические и методические основы изучения интеграла в школьном курсе математики
Необходимость изучения интеграла в школе характеризуется тем, что: если изучать только производную, но не изучать интеграл, то цикл анализа одной переменной не будет завершен; в приложениях (в том числе в физике) гораздо чаще, чем задачи на вычисление производной, её применение, используются задачи ...

Главные разделы

Copyright © 2018 - All Rights Reserved - www.rumschool.ru